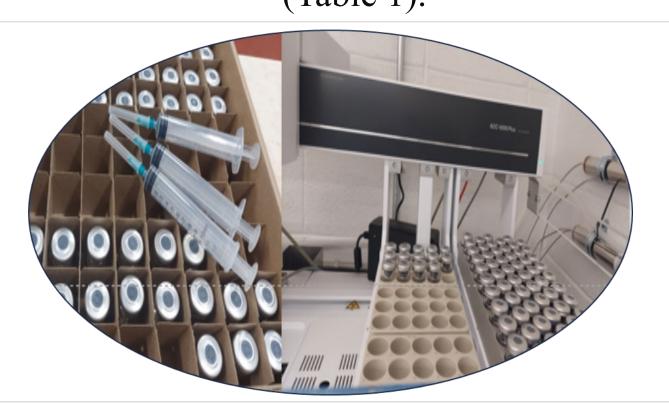
Introduction

- > Greenhouse gases (GHGs), essential components of the earth's atmosphere, regulate the earth's temperature by trapping heat from solar radiation.
- \succ The major GHG includes methane (CH₄), carbon dioxide (CO_2) and nitrous oxide (N_2O) .
- > Manure produced in broiler houses is a source of GHG emissions.
- \succ Reduction of GHG emissions from broiler houses can help mitigate the impacts of global warming.
- > Previous research has focused on controlling ammonia emissions using amendments. However, less information is available on GHG emissions from Broiler Litter (BL)
- > Therefore, it is important to investigate amendments and their potential use for reducing GHG emissions from BL.

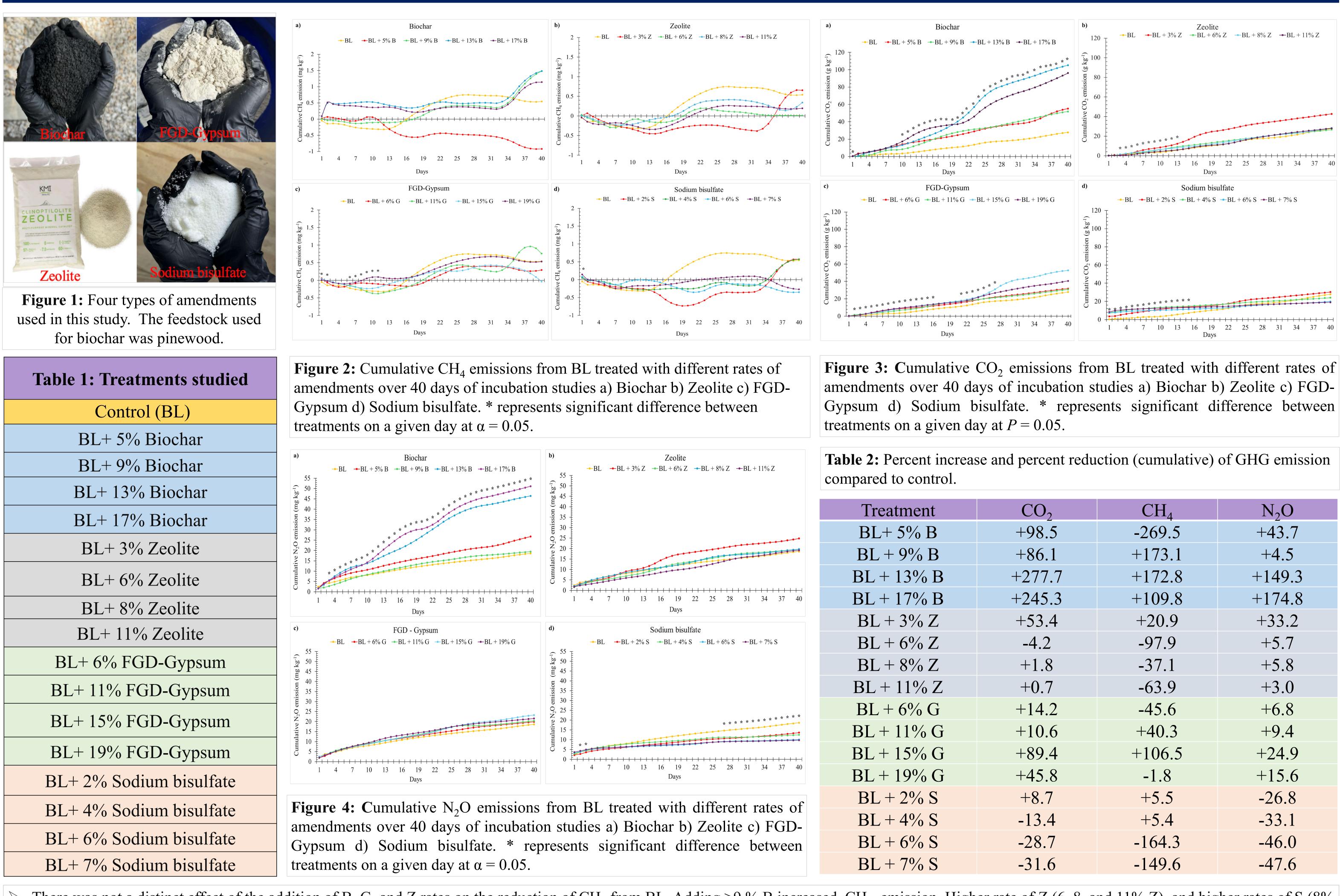
Objective

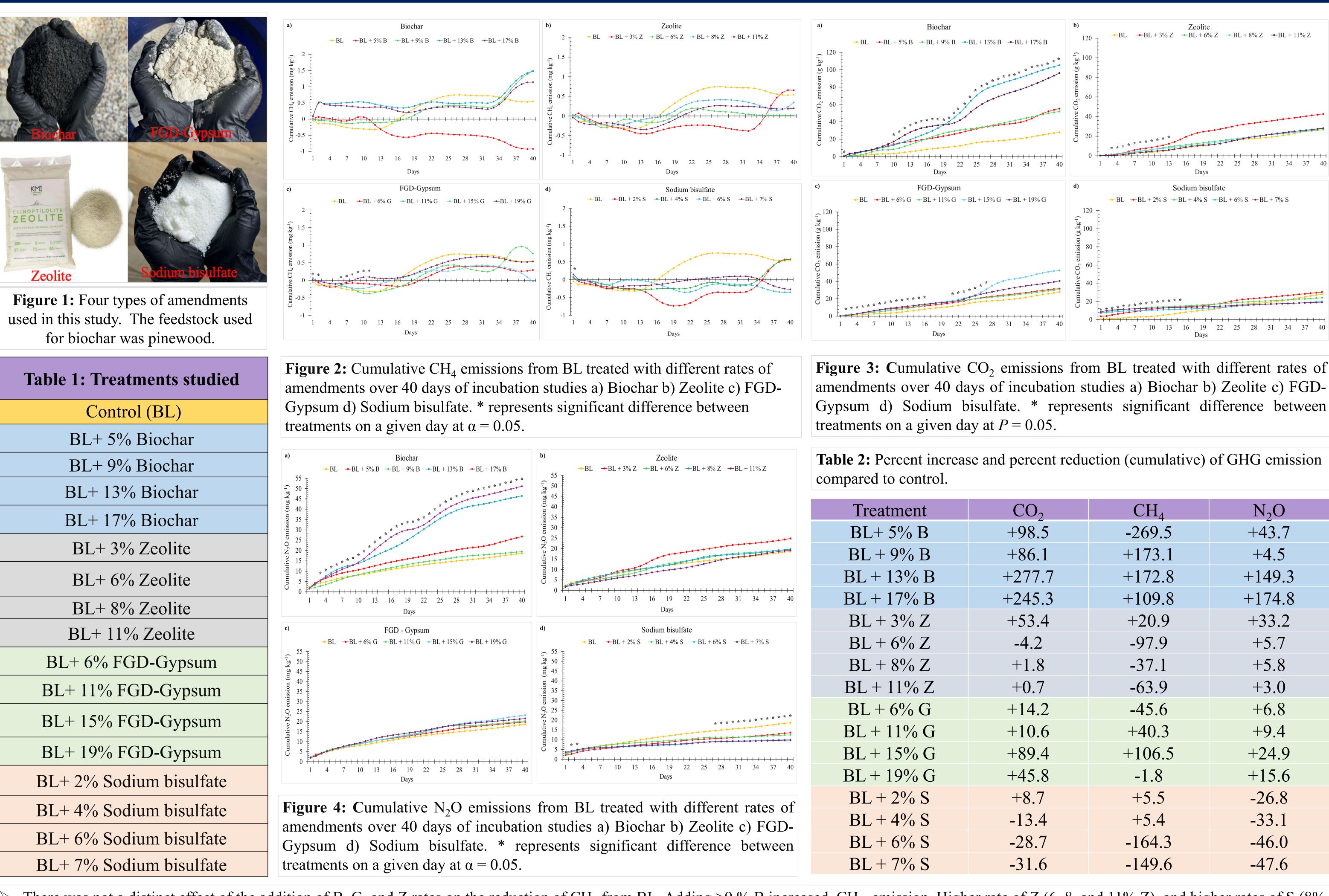
 \succ To investigate the potential of biochar (B), zeolite (Z), Flue Gas Desulphurization - Gypsum (G), and Sodium bisulfate (S) at different application rates to reduce GHG emissions from BL.


Materials and Methods

Step 1: Broiler litter from commercial farms was used. 100g of BL was added to mason jars.

Step 2: The gas samples from the headspace of the jars were collected in pre-evacuated vials using a 10 ml syringe at 60minute intervals (0, 60, and 120 minutes) on days: 1, 2, 3, 6, 9, 12,16, 20, 24, 28, 32, 36, and 40 for a total of 17 treatments (Table 1).




Step 3: The gas samples were analyzed using a Shimadzu Gas Chromatography equipped with flame ionization detector (FID) and electron capture detector (ECD).

GHG emission rate was calculated as: $\mathbf{E} = \mathbf{P} \times \mathbf{V} \times \frac{\Delta C}{\Delta t} \times \frac{1}{RT} \times \frac{M}{m}$

where, E stands for emission rate ($\mu g g^{-1} h^{-1}$), P refers to standard atmospheric pressure (Pa), V is the headspace volume (m^3) , c is CH_4 , CO_2 , N_2O concentration (ppm), t is time between two samples (h), R refers to the universal gas constant (m³ Kpa mol⁻ ¹k⁻¹), T stands for absolute air temperature (K), M is molecular mass of CH_4 , CO_2 , N_2O (g mol⁻¹) and m dry weight of BL (g) (Deng et al., 2016).

High The This Furth
Deng
mead

> We are thankful and acknowledge USDA-ARS for supporting this project. > Animal Waste and Environmental Nutrient Management Lab.

Efficacy of Amendments in Reducing Greenhouse Gas Emissions from Broiler Litter ¹D. Chakraborty, ²S. Poudel, ²R. Prasad ¹Department of Biosystems Engineering, Auburn University, Auburn, AL ²Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, Alabama

 \succ There was not a distinct effect of the addition of B, G, and Z rates on the reduction of CH₄ from BL. Adding >9 % B increased CH₄ emission. Higher rate of Z (6, 8, and 11% Z) and higher rates of S (8% and 11%) were acting as sink (Figure 2). \triangleright The use of B didn't show benefit in reducing CO₂ emissions. Z and G application had no significant effect on GHG reduction, whereas application of 4%, 6%, and 7% sodium bisulfate reduced CO₂

emissions (Figure 3).

 \triangleright All four rates of S lowered the N₂O emissions compared to the control however, B, Z, and G did not reduce N₂O emissions compared to the control (Figure 4). > Among the treatments used, 4, 6, and 7 % of S were found to be a promising amendment to reduce GHG emissions from BL (Table 2). \triangleright The results showed that 13% B and 17% B significantly increased cumulative CO₂ and N₂O emissions, whereas 5% B and 9% B did not affect GHG emissions compared to control.

her rates of S have higher potential to reduce CH_4 , CO_2 and N_2O emission from BL. distinct effect of biochar, FGD-gypsum and zeolites rates on reducing GHG emission was not observed. study provides valuable insights into the selection of amendments and their rates for future investigations. her investigation using varied rates of amendments in broiler houses can yield more convincing information on the effect of amendments on GHG emissions.

g, B.L., Li, Z.Z., Zhang, L., Ma, Y.C., Li, Z., Zhang, W.Y., Guo, X.M., Niu, D.K., Siemann, E., 2016. Increases in soil CO₂ and N₂O emissions with warming depend on plant species in restored alpine lows of Wugong Mountain, China. J. Soils Sediments 16, 777–784.

Result and Discussions

Conclusions

Reference

Acknowledgement

CH ₄	N ₂ O
-269.5	+43.7
+173.1	+4.5
+172.8	+149.3
+109.8	+174.8
+20.9	+33.2
-97.9	+5.7
-37.1	+5.8
-63.9	+3.0
-45.6	+6.8
+40.3	+9.4
+106.5	+24.9
-1.8	+15.6
+5.5	-26.8
+5.4	-33.1
-164.3	-46.0
-149.6	-47.6