

Introduction

Fertilizer management is often the greatest expense in forage production, and update research is limited. A major reason for limited research availability is due to the challenges of conducting applied research statewide, in a manner that is efficient and applicable to producers, agents, and researchers alike. Most research requires specific management, large areas of producer land, and often requires a large workload and specialized equipment. Additionally, the added costs associated with fertilizer management research is a barrier for large-scale on-farm research. Therefore, a method is needed to conduct statistically sound research that also demonstrates management needs and has limited negative impacts on producer operations.

Objective

Develop micro-plot research trials for conducting statewide research in forage nutrient management to reduce the limitations of cost, labor, timing, and impact to producerowned operations.

Materials and Methods

- Three research objectives were identified for statewide assessment through on-farm replicated research in warm season grasses.
 - 1. Evaluate the influence of Nitrogen application rate on forage biomass production.
 - 2. Evaluate the influence of Sulfur application rate on forage biomass production.
 - 3. Evaluate the influence of Nitrogen stabilizers on forage biomass production.
- > Micro-plot research trials were designed using a Latin-squared research design, where the number of treatments and replications are equal.
- \succ Individual plot size was limited to 5 foot wide by 5 foot deep, no alleyways or buffer zones were used between plots or replicates, resulting in the largest area used per objective being 25 foot by 25 foot.
- \succ Protocols were developed outlining methods, treatments, and data collection.
- \succ Treatments were assigned based on the specific objective as follows:
 - **1**. 5 Nitrogen rates: 0, 25, 50, 75, 100 lb Nitrogen/acre.
 - 2. 4 Sulfur rates: 0, 10, 20, 40 lb Sulfate/acre
 - 3. 4 Nitrogen stabilizer treatments: None, NBPT, NBPT⁺ + Duromide, NBPT⁺ + DCD[‡]. ⁺N-butyl thiphosphoric triamide, [‡]Dicyandiamide
- Research protocols, pre-weighed fertilizer products, data collection sheets, and clippers for harvesting biomass were offered to agents interested in conducting the micro-plot trials.
- Plots were established on producer-owned operations in areas with high visibility.
- \succ Treatments were applied following the procedures outlined in the provided protocol.
- > Data collection occurred approximately 30 days after applications by clipping biomass from a 1 square foot area from each plot, weighing each collected sample, and air drying 5 samples for 7 days for moisture content for yield correction.
- \succ Collected data was analyzed using proc GLM in SAS 9.4, data was compiled, analyzed, interpreted, and results collated by the soil fertility extension specialist.
- \succ Research reports of statewide results were provided to each county for use in demonstration booklets, at county production meetings, and other outreach opportunities.

Micro-Plot Research and Demonstration of Forage Nutrient Management in Arkansas B. Finch, J. Gunsaulis, A. Simpson, K. Wallace, S. Hayes, K. Lawson,

J. Clemons, M. Paskewitz, J. Dew, B. Baldridge, G. Hewitt, A. Willis

8 Counties conducted the nitrogen rate trial \rightarrow 11 producer-owned locations $\rightarrow \stackrel{\scriptstyle{\scriptstyle{\leftarrow}}}{=}$ Results were similar across locations $\rightarrow \overline{\mathbb{R}}$ Nitrogen application is often more $\rightarrow \check{g}_{0.5}$ ____ important than the rate.

Picture 1. Clipper and quadrat used for harvest

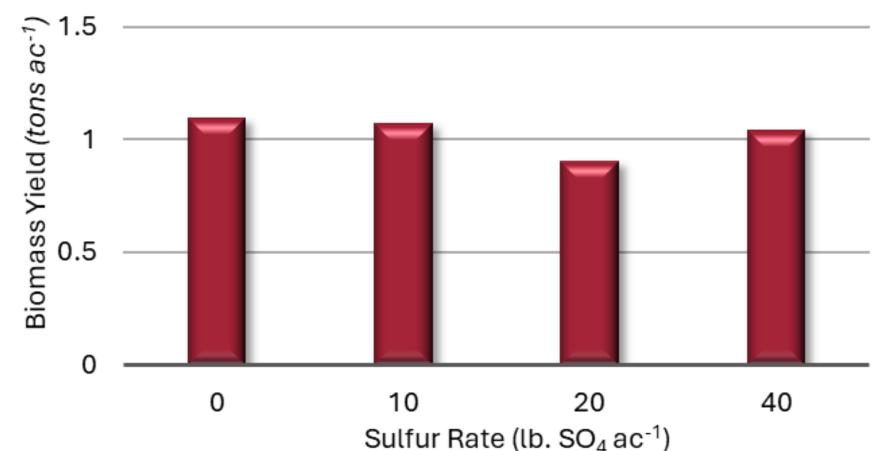
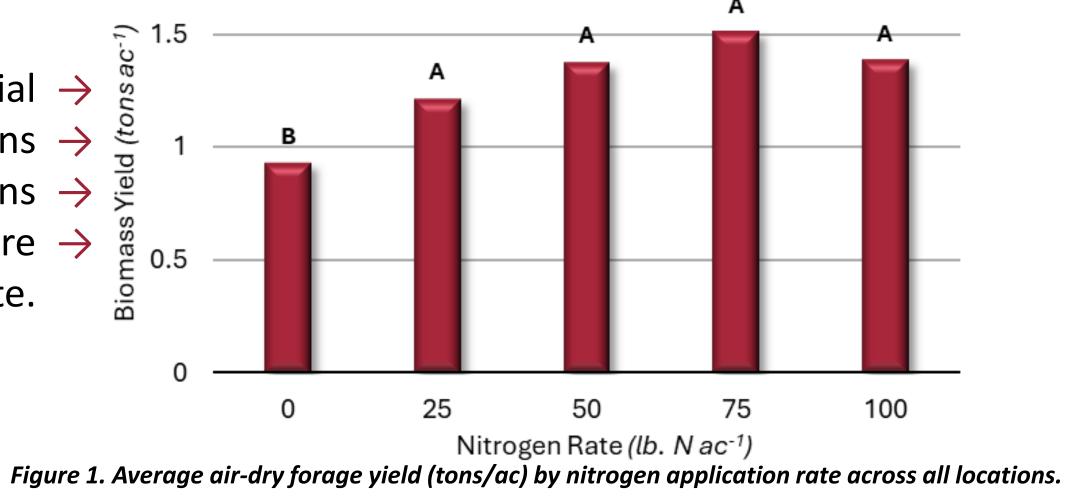


Figure 2. Average air-dry forage yield (tons/ac) by sulfur application rate across all locations

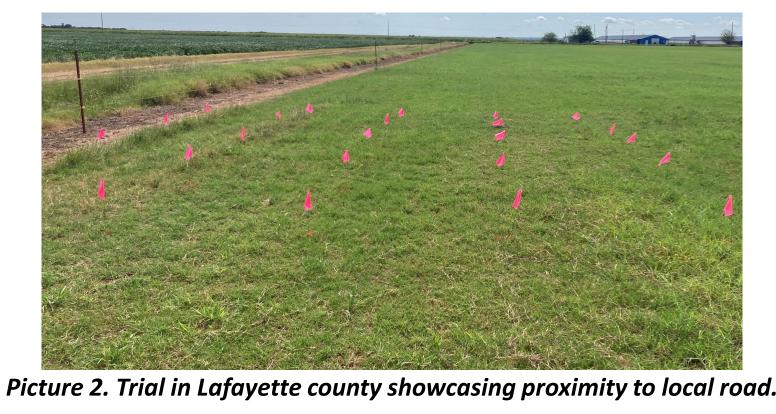
Picture 3. Harvest at the Univ. of Arkansas at Monticello Farm

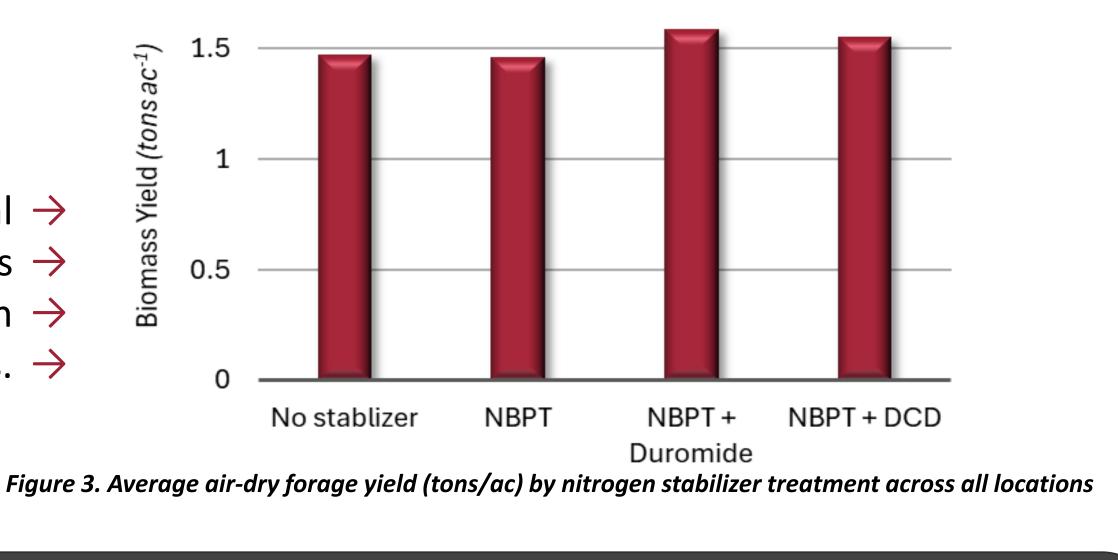
7 producer-owned locations \rightarrow


6 Counties conducted the Nitrogen stabilizer trial \rightarrow Nitrogen stabilizers did not improve biomass yield production \rightarrow Precipitation after application reduced the need for N stabilizers. \rightarrow

Summary

Research Results


- rate recommendations.
- > Sulfur application rate did not improve short-term biomass production. More research is needed to identify the impact of sulfur management for forage production.
- Nitrogen stabilizers were not impactful as all locations received timely rainfall that reduced the potential need. More research is needed to identify responses during dry conditions.
- Positive Impacts
- Agents reported an increased understanding of research, recommendations, and confidence in making fertilizer recommendations to forage producers. Producers reported visual differences compared to producer management showcasing a need for fertilizer
- applications.


Results

Letters represent statistical differences, where treatments with the same letter are not different.

←5 Counties conducted the sulfur rate trial ←6 producer-owned locations All locations met soil test requirements for an application of sulfur
←Sulfur application did not impact biomass yield production

> Nitrogen application showcases the need to apply nitrogen, while also demonstrating and supporting current nitrogen

Encouraged producers to fertilize pastures and hay fields, who often would not. > Feedback and interest from agents and producers, indicates value in micro-plot research and demonstration trials

