

Effects of Cattle Removal Date on Sustainability of Cool-Season **Annual Grazed Cover Crop Systems**

Introduction

- Grazing of cool-season cover crops has been shown to be a viable tool in extending the grazing season while mitigating environmental risks associated with row crop farming systems.
- Our objective was to evaluate the effects of cattle removal date on forage yield, forage quality, and steer performance when grazing cool-season cover crops.

Experimental Design

- Completely Randomized Design
 - 3 replicates (n = 3)
 - 4 cattle removal treatments
 - no grazing (CON); February removal (FEB); March removal (MAR); or April removal (APR)
 - 12 1.53 ac paddocks
 - 3-year study

Methods

Cover Crop Mixture

- 'FL401' Cereal Rye, 'Cosaque' Oats, 'AU Sunrise' Crimson Clover, 'T-Raptor' Brassica
- Paddocks were seeded with a no till drill into residual
 - Cereal rye: 37 / 24 lb PLS/ac grazed/un-grazed
 - Oats: 37 / 24 lb PLS/ac grazed/un-grazed
 - Crimson clover: 12 lb PLS/ac grazed/un-grazed
 - Brassica: 2.4 lb PLS/ac grazed/un-grazed
- Each year, grazed paddocks received 60 lb N/ac and control paddocks received 30 lb N/ac in the form of ammonium sulfate $[(NH_4)_2SO_4]$ in December prior to grazing in January.
- Steers were randomly allocated to grazing treatments based on mean BW (Table 1)
- Initial BW, final BW, and ADG were measured
- Stocking density and forage allowance were maintained during the grazing season.
- 6 forage samples were taken in each paddock Measure forage biomass, nutritive value, and botanical composition
- Data were analyzed using Proc MIXED of SAS 9.4 (SAS Institute, Cary, NC), α < 0.05.

Trt

Grazing Initiation

Grazing Terminati

Length of season(d

Figure 1. Plot map showing the treatment structure of the 12-1.53 ac paddocks.

Table 2. Mean forage biomass, forage allowance, grazing days per hectare, and stocking density of cover crops consisting of cereal rye, oat, crimson clover, and brassica under different grazing regimes. Item

Forage Bio

Forage Allc

Grazing da

Stocking c

¹CON = Control; FEB= February removal; MAR= March removal; APR = April removal ²Calculated as stocking density (steers/ha) \times length of grazing season (d). ^{abc}Within a row, values without a common superscript differ (*P* < 0.05).

S.L. Dillard^{1,2}, M. B. Henson¹, R. C. Carrell¹, M. K. Mullenix¹, A. V. Gamble², R. B. Muntifering¹ ¹Department of Animal Science, Auburn University, Auburn, AL, ²Department of Crop, Soil, and Environmental Science, Auburn University, Auburn, AL

Table 1. Grazing initiation and termination dates under different grazing regimes.

	Spring 2019				Spring 2020				Spring 2021				Spring 2022			
	CON	FEB	MAR	APR												
	-	Jan 11	Jan 11	Jan 11	-	Jan 13	Jan 13	Jan 13	-	Jan 4	Jan 4	Jan 4	-	Jan 4	Jan 4	Jan 4
ion	-	Feb 14	Mar 1	Apr 15	-	Feb1 2	Mar 9	Apr 10	-	Feb 15	Mar 15	Mar 15	-	Feb 16	Mar 21	Mar 30
f I)	-	34	49	94	-	30	56	88	-	42	70	70	-	43	76	85

¹CON = Control; FEB= February cattle removal; MAR = March removal of cattle; APR = April removal of cattle

Mid-Apr Feb Mar Apr grazing

Figure 2. Soil compaction measured to 50 cm of the soil profile after 4 years of grazing cover crops.

	CON	FEB	MAR	APR	Mean	SE	
omass, lb DM/lb of BW	8624 ^a	5284 ^b	4206 ^b	4687 ^b	5698	449.7	
owance, lb DM/lb of BW	-	1.90	1.85	1.65	1.81	0.13	
ays per acre, d/ac ²	-	369	490	622	493	87.0	
lensity, steers/ac	-	5.8	5.6	4.6	5.4	0.62	

Results

Forage Yield and Quality

- Seasonal forage biomass was greater in CON paddocks than FEB, MAR, and APR (Table 2).
- No differences were detected among grazing treatments for forage allowance, grazing days per hectare, stocking density, NDF, or ADF.

Soil Compaction

- There was no significant difference in the lower subsoil zones (Figure 2).
- Cattle grazing increased soil compaction only in the top layer of subsoil (0 – 5 cm) suggesting increased trampling but no inhibition of root growth of future cash crops.

Cattle Performance

No differences were detected among treatments for initial BW, ADG, or BW gain per acre.

Figure 3. Cover crop biomass from cattle removal date to termination of project.

Conclusion

- Grazing cool-season annual cover crops will reduce forage yield. Removal date will not further affect forage yield, quality, or
- individual cattle performance. Winter supplementation needs for cattle can be reduced by
- increasing grazing days. Under continuous grazing for stocker cattle production, forage availability may be the limiting factor.

