

Introduction

- > Poultry industry in Alabama is the second largest agricultural industry and generates an estimated 1.5 million tons of poultry litter (PL) containing approximately 19,350 tons of phosphorus (P) (Booth, 2002).
- Poultry litter is bulky which limits their economical long distance transport
- Repeated application of PL on farmland often result in buildup of P in so time leading to creation of "**Photspots**".
- > Phosphorus transported from agricultural fields during rainfall events can trigger eutrophication of aquatic systems and cause ecological and economic degradation.
- > Lake Wedowee watershed in Alabama is of prime importance mainly due to expansion of poultry operations in the area.
- \blacktriangleright Phosphorus Index or Soil test P (STP) are the two most common tools used to indicate the potential for P loss risk from farmlands to environment.
- \blacktriangleright Effectiveness of these tools to predict P loss risk is not clear for Alabama soils.
- > P saturation ratio (PSR) and soil P storage capacity (SPSC) are two potential tools that can be used for environmental risk of Ploss from Alabama soils.
- Soil phosphorus storage capacity is defined as the amount of P that can be added to a given volume or mass of soil before the soil becomes an environmental concern.
- ➤ A soil PSR (change point) of 0.10 and above has been established as an indicator of greater risks of P loss from Florida soils (Nair et al., 2004).

Hypothesis

Soil test P originally developed for agronomic purposes is not a true indicator of environmental P loss risk.

Objectives

- > To estimate the PSR and SPSC of soils under different management practices in Lake Wedowee watershed.
- > To compare if SPSC and PSR are better approaches for environmental P loss risk assessment than STP.

Materials and Methods

- Soil samples were collected from pasture lands, row crop and hay fields in the Wedowee watershed.
- \blacktriangleright Samples were collected to a depth of 60 cm (0-5, 5-15, 15-30 and 30-60 cm) at multiple locations within a field.
- Samples for respective depths were air-dried, grinded and sieved.
- ➤ Water Soluble P (WSP) was determined using 1:10 soil:solution ratio
- ➤ Mehlich-1 (M1), Mehlich -3 (M3) and Oxalate (Ox) extractable P, Fe and Al were determined using standard procedures (Chakraborty et al, 2012)

New Tools to Identify Phosphorus Hotspots and Predict Phosphorus Loss Risk from Manure Impacted Soils D[.] Chakraborty² and R. Prasad^{1,2}

2. dzc0003@auburn.edu 1,2 rzp0050@auburn.edu

¹Alabama Cooperative Extension System, ²Dept. of Crop, Soil, and Environmental Sciences, Auburn University, AL, 36849

	Calculations
nd	Phosphorus saturation ratio (PSR): molar ratio of P to {Al +Fe} based on oxalate extraction.
ortation.	SPSC was determined from oxalate extractant considering a threshold PSR of 0.15 for Alabama soils
oil over	
	SPSC = $(0.15 - PSR)$ *Extractable (Fe+Al)*31(mg P kg ⁻¹)
. •	

References

Figure 3: Relationship between water soluble P (WSP; mg kg⁻¹) and

P saturation ratio using oxalate extractant (PSR_{ox}) for Alabama soils.

◆ Booth, L. 2002. Animal Waste Products used in Crop and Forage Production. Alabama Cooperative Extension System. Publication no. CRD-67-A.

✤ Nair, V.D., K.M. Portier, D.A. Graetz, and M.L. Walker. 2004. An environmental threshold for degree of phosphorus saturation in sandy soils. J. Environ. Qual. 33: 107-113

Figure 1: (a) The Tallapoosa River Basin in Alabama and Georgia with the Lake Wedowee region circled; (b) distribution of broiler production in Alabama (c) Soil cores taken from sampling farms.

Results and Discussion

Table 1. Selected chemical characteristics of two soil sample with same Mehlich 1 (M1)-P

Figure 4: Relationship between SPSC (mg kg⁻¹) and WSP (mg kg⁻¹) for soils from Lake Wedowee watershed.

- Relationship between M1-P and WSP (Fig. 1) indicates that when M1-P is <50 mg kg⁻¹ environmental P loss risk is less and the risk increases as M1-P value exceeds 50 mg kg⁻¹.
- ➢ Water soluble P has a greater correlation with M3-P (Fig. 2) compared to M1-P (Fig.1). Further research is needed to confirm this finding for Alabama soils.
- \blacktriangleright Although STP (M1-P) can be used as indicator for P loss risk, however Table 1 shows the drawbacks of using M1-P. Two soils with same M1-P have different P retentive capacity.
- > The "change point" PSR for Alabama soils is 0.15 (Fig. 3). Further research is needed to confirm the change point PSR for Alabama soils.
- > SPSC calculated using oxalate extractant has a better relationship with WSP (Fig. 4) and is a better indicator for P loss as it accounts the actual P retentive capacity of the soil.
- \blacktriangleright Most of the surface 0-5 cm soil have negative SPSC and act as a P source. However most of the subsurface horizons (30 cm +) have capacity to retain P.

Acknowledgement

This research work was supported by Alabama soil and water conservation committee and Natural Resource Conservation Service Alabama.